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Abstract—Near Earth Asteroids (NEAs) pose a poten-
tially devastating threat to Earth in the event of a collision,
giving great importance to monitoring their orbits. This
study aims to track the orbital path of the NEA 2003 HA22
using three separate observations of the asteroid, which
were taken at the Cerro Tololo Observatory in La Serena,
Chile and the NIRo Observatory in Indiana, USA across
the month of July 2021. Once the images were obtained,
the data was reduced and aligned, and the uncertainty
was determined through Least Squares Plate Reduction
in AstroImageJ with reference stars from the UCAC4
catalog in SAO DS9. In order to calculate the orbital
elements, the Method of Gauss was used, using iteration to
calculate increasingly accurate position vectors for a body.
Using 10,000 Monte Carlo Simulations with the Method
of Gauss, we obtain the following six orbital elements: a
= 1.80064 AU, e = 0.372564, i = 1.54393 degrees, omega
= 163.423 degrees, Omega = 122.032 degrees, and M =
365.675 degrees. The data was submitted to the Minor
Planet Center to be used for tracking future encounters.

Index Terms—Orbit Determination, Near-Earth Aster-
oid, Method of Gauss, Monte Carlo.

I. INTRODUCTION

IN addition to the commonly known planets,
our solar system also boasts many forms of

space debris. Some of the most frequently-occurring
objects include comets and asteroids. Although the
two terms are often confused, they refer to two
distinct objects. Comets are composed of frozen
chunks of rock, gas, and dust, and are recognized
by their defining “trails”, which occur when they
heat up upon approaching the Sun [3]. Comets
orbiting our Sun are largely found in the Kuiper
Belt, which begins at around Neptune’s orbit and
extends to almost 1,000 AU from the Sun [10].
On the other hand, asteroids are defined as rocky
objects that orbit the Sun; thus, they are also known
as minor planets [1]. Asteroids are most commonly
found within the asteroid belt, which spans between

the orbits of Mars and Jupiter, however, they may
occasionally stray closer to the Sun [2].

This study will be focused on Near Earth Aster-
oids (NEAs), which are defined as asteroids with
orbits that are close to or crossing Earth’s orbit [7].
Similarly, Mars-crossing asteroids are those that in-
tersect Mars’ orbit [6]. Although relatively unlikely,
some NEAs may pose a threat to Earth in that
there is a non-negligible risk of collision [9]. Thus,
although there are no asteroids projected to strike
the Earth within the next few hundred years, search
campaigns are still crucial. Current search cam-
paigns include NASA’s Near Earth Object (NEO)
Observation Program; as expected, this campaign
combs the skies for potentially hazardous NEOs and
NEAs. The NEO Observation Program especially
focuses on objects larger than 1 kilometer, as these
pose the greatest threat upon impact. Additionally,
in 2014, a NEO Impact Working Group was ap-
proved; this group focuses on preparing disaster
response measures for post-collision scenarios [5].

The NEA utilized in this report is 2003 HA22.
To determine the orbit of an asteroid, six orbital
elements are used. The following definitions of these
elements are referenced from the Summer Science
Program’s OD 2021 Booklet. The first two orbital
elements, the semi-major axis and the eccentricity,
are concerned with the elliptical orbit of the as-
teroid. The semi-major axis refers to the longest
diameter of the asteroid’s elliptical orbit, and is used
to measure the orbit’s size. The eccentricity refers to
the “shape” of the ellipse, where a lower eccentricity
refers to a more circular orbit while a higher eccen-
tricity corresponds with a more elongated orbit. The
next three orbital elements are concerned with the
relationship between the plane of the asteroid’s orbit
and the plane of Earth’s orbit (the ecliptic). Firstly,
inclination is the angle between the two planes, and
is measured in degrees. Next, the longitude of the
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ascending node is the angle between the Vernal
Equinox (0 RA, 0 Dec) and the ascending node.
The ascending node is the point at which the two
planes intersect, where the asteroid begins moving
from South to North in the ecliptic plane. Next is the
argument of perihelion, which is the angle between
the Vernal Equinox and the asteroid’s closest point
of passage to the Sun. The last orbital element is
the mean anomaly, which is time dependent and is
defined as the position of the asteroid if its orbit
were circular, and is measured from the point of
perihelion. Both this and the time of last perihelion
passage may be used.

For the orbit determination process, we will be
using the Method of Gauss, the steps of which
will be outlined later in the report. The Method of
Gauss is used in place of the Method of Laplace
because the range to our asteroid is relatively small.
In order for the Method of Gauss to be used, three
observations of the asteroid must be taken. The time
between these three observations should be roughly
even.

II. OBSERVATIONS AND IMAGE PROCESSING

A. Data Acquisition
During the course of SSP, our team submitted

two observing requests that were successful and
obtained images that were then processed. Both
of these successful observing requests were lo-
cated at Cerro Tololo Inter-American Observatory
in Vicuña, Coquimbo, Chile. Our observations used
the Prompt-6 telescope, which is an Optical and Po-
larimetry Telescope with a diameter of .04 meters.
The PROMPT telescopes primarily use Alta U47+
cameras and E2V CCDs [8]. Images of asteroid
2003 HA22 were also taken at a group observation
event for which our team was not responsible for
submitting an observing request. Those images were
taken at NIRo Observatory at Purdue University
Northwest in Lowell, Indiana, United States, with an
RCOS 20” telescope. The telescope has a diameter
of 0.508 meters and a FLI PLO 9000 camera. The
locations at which our observations were taken are
displayed in Table I.

B. Image Reduction
Once we obtained our images, we started the

process of image reduction. Using AIJ, we reduced,
aligned, and stacked the images to get rid of high

background noise and vignetting. Next, we took
our 3 sets of 3 images created in the process and
blinked them to determine the location of the aster-
oid. We then plate-solved the images in AIJ using
Astrometry.net and determined the right ascension
and declination of our asteroid. With plate-solved
images we were able to select reference stars in
DS9 using the UCAC4 catalog to determine the
magnitude of our asteroid.

C. Determination of Errors in Astrometry
One method we used to determine errors in our

astrometry was LSPR, or Least Squares Plate Re-
duction. A LSPR determines the RA and Dec of an
object, as well as uncertainties in these values, using
the centroids, RAs, and DECs of a set of reference
stars. The LSPR reports for our 07/08 observation
of 2003 HA22 at NIRo is shown in Table II.

We also calculated uncertainties using RMS (root
mean squares) on corr.fits files obtained from plate
solving using Astrometry.net. These uncertainties
show us how our measured RA and Dec values dif-
fered from the expected values, using the following
formulas: √√√√ 1

n

∑
j

(αj − α0j)2

√√√√ 1

n

∑
j

(δj − δ0j)2,

where α and α0 are the measured and expected
RA values, and δ and δ0 are the measured and
expected DEC values.

D. Results
The results of our two observations of three

images each, along with their uncertainties, are
displayed in Table III.



SSP 2021 ONL 7 3

Date/Time Observatory Images Quality of Images

06/26 22:49 to 06:02 UTC Fan Mountain Observatory, Virginia (RRRT) N/A N/A
06/29 01:52 to 04:20 UTC Fan Mountain Observatory, Virginia (RRRT) N/A N/A
07/08 00:00 to 03:47 UTC Cerro Tololo Observatory, La Serena 9 Good
07/14 01:37 to 05:24 UTC Cerro Tololo Observatory, La Serena 9 Good
07/19 01:40 to 05:27 UTC Cerro Tololo Observatory, La Serena N/A N/A

TABLE I
OBSERVATORIES USED.

Image Set b1 b2 a11 a12 a21 a22 RA DEC

1 236.70895 -15.11867 -0.0002911 -9.41546 3.8320984 0.0002823 15.76397 -14.9135
2 236.70895 -15.11867 -0.0002911 -9.41546 3.8320984 0.0002823 15.76397 -14.9135
3 236.70895 -15.11867 -0.0002911 -9.41546 3.8320984 0.0002823 15.76397 -14.9135

TABLE II
LSPR RESULTS.

Julian Date RA DEC AbsMag BoloMag Diameter (km) RA Uncert. DEC Uncert.

2459403.515 15:58:49.70 -16:15:08.4 19.557 17.332 0.4208 5.85702e-05 2.1089e-05
2459403.532 15:58:52.89 -16:15:29.6 19.724 17.499 0.3896 5.80864e-05 2.4823e-05
2459403.547 15:58:55.69 -16:15:48.1 19.606 17.381 0.4114 1.31565e-04 4.8144e-05
2459409.601 16:21:50.21 -18:21:52.5 19.6269 17.4016 0.4075 9.94231e-05 9.6816e-05
2459409.602 16:22:00.15 -18:23:01 19.91 17.685 0.3577 9.40786e-05 6.5348e-05
2459409.603 16:21:50.63 -18:21:54.7 19.854 17.629 0.367 9.18694e-05 6.3729e-05

TABLE III
OBSERVATIONAL RESULTS.

III. ORBIT DETERMINATION

A. The Method of Gauss

Orbit determination was performed using the
Method of Gauss, which is an iterative method for
predicting the location of the asteroid using three
evenly spaced out intervals, where the first and
third observations are used in order to compute the
second.

The fundamental triangle shown below relates
the three vectors ~r, ~ρ, and ~R, which represent the
vectors from the Sun to the asteroid, Earth to the
asteroid, and Sun to the Earth, respectively. Thus,
we aim to find ~r2 and ~̇r2, which are the position
and velocity vectors of the asteroid for the middle
observation.

The relationship between these vectors are given
by

~r = ~ρ− ~R.

Fig. 1. The Fundamental Triangle. Adapted from the Orbit Deter-
mination Packet (2021).

From each observation, using the RA and DEC
values, we can obtain ρ̂, the unit vector pointing
in the direction of the asteroid. MoG allows us to
use ρ̂ and the sun vector ~R to compute the position
and velocity vectors ~r2 and ~̇r2 through iteration.
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A brief overview of the Method of Gauss is as
follows:

1) Obtain an initial guess for ~r2 using the Scalar
Equation of Lagrange.

2) Compute initial f and g expressions using a
truncated second order Taylor series.

3) Compute the position vectors ~r1, ~r2, and ~r3.
4) Use the f and g expressions to compute an

initial ~̇r2.
5) Correct the time for the speed of light.
6) Iterate by recomputing f and g, using those

to recompute the ρ values until the difference
between subsequent rhos is less than a thresh-
old, which we define as 1 · 10−12.

The Method of Gauss was implemented in
Python 3.9 using NumPy. Each step is discussed in
further detail below.

1) Obtaining an initial ~r2 : We begin by gener-
ating an estimate for ~r2 using the Scalar Equation
of Lagrange. The equation is given by

r8
2 + ar6

2 + br3
2 + c = 0.

Solving this eighth degree polynomial yields roots
that serve as the initial guess for ~r2. Imaginary and
negative roots are discarded. a, b, and c are derived
from the times, the sun vectors, and ρ̂.

2) Computing Initial f and g Values: The initial
f and g values can be computed using a truncated
second order Taylor series. These equations approx-
imate f and g without the use of ~̇r2, which we do
not have yet:

fi = 1 − µ

2r3
2

τ 2
i

gi = τi −
µ

6r3
2

τ 3
i .

τ is the time (in Gaussian days) of the observation,
r2 is known from the Scalar Equation of Lagrange,
and µ is 1 as we are working in Gaussian time.

3) Computing the Position Vectors ~r1, ~r2, ~r3 :
Using the f and g values, we can now compute the
r values. First, using the known ρ̂ vectors and the
~R vectors, we can compute ρ, also known as the
scalar equations of range:

ρ1 =
c1 ·D11 + c2 ·D12 + c3 ·D13

c1 ·D0

ρ2 =
c1 ·D21 + c2 ·D22 + c3 ·D23

c2 ·D0

ρ3 =
c1 ·D31 + c2 ·D32 + c3 ·D33

c3 ·D0

,

where

c1 =
g3

(f1g3 − g1f3)

c3 =
−g1

f1g3 − g1f3

c2 = −1,

and
D0 = ρ̂1 · (ρ̂2 × ρ̂3)

D1j = ( ~Rj × ρ̂2) · ρ̂3

D2j = (ρ̂1 × ~Rj) · ρ̂3

D3j = ρ̂1 · (ρ̂2 × ~Rj)

j = 1, 2, 3.

Then, we can use ρ to compute the position vectors.

~r1 = ρ̂1 · ρ1 −R1

~r2 = ρ̂2 · ρ2 −R2

~r3 = ρ̂3 · ρ3 −R3

This equation gives us an updated version of ~r2, as
well as ~r1 and ~r3, which are needed to compute
the velocity vector.

4) Computing the Velocity Vector ~̇r2 : The initial
~̇r2 value can be computed using the equation

~̇r2 =
−f3

f1g3 − f3g1

~r1 +
f1

f1g3 − f3g1

~r3.

5) Light-travel Time Correction: Since the time
that it takes for light to travel from the asteroid
to the earth is non-negligible, we must account for
this time. This can be done through the following
equation:

ti = to,i −
ρi
c
.
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6) Iteration: Now, since we have all the initial
values, we can iterate, recomputing f and g with ~r2

and ~̇r2 and using them to calculate updated ~r2 and
~̇r2 vectors. However, we can use the closed forms of
f and g rather than the series, as it allows for more
accurate computations. These equations are given
below:

fi = 1 − a

r2

[1 − cos ∆Ei]

gi = τi +
1

n
[sin ∆Ei − ∆Ei].

To compute ∆Ei, we use the Newton-Raphson
method with a tolerance of 1 · 10−12 to numerically
solve the equation

E − (1 − r2

a
) sinE +

~r2 · ~̇r2

n · a2
(1 − cosE) − nτi.

Then, we use our new f and g to recompute
~r2 and ~̇r2, iterating until the difference between
subsequent rhos is less than 1 · 10−12.

B. Limitations of the Method of Gauss
Due to its iterative nature, the Method of Gauss

can potentially fail to converge. This is often a
result of the three observations being too close to
each other or lacking curvature. For this reason, we
had to try several different combinations of three
observations until one returned a successful result.

The successful set of three points consisted of two
observations from observing group ONL 8 and one
of our observations. The observations are displayed
in Table IV.

Date RA DEC

2021 07 03 00:15:53 15:43:03.01 -14:37:19.2
2021 07 08 00:22:04 15:58:49.70 -16:15:08.4
2021 07 15 00:09:07 16:25:38.47 -18:40:50.7

TABLE IV
OBSERVATION INFORMATION USED FOR ORBIT DETERMINATION.

C. Monte Carlo Simulations
To simulate uncertainty in our orbit determination

process, we used Monte Carlo simulations, which
rely on sampling RA and DEC values from a nor-
mal distribution using the computed uncertainties.
To implement this simulation, we used Python to

randomly generate hundreds or even thousands of
data points of our orbital elements. From these
data points we were able to calculate a mean and
a standard deviation, and create distribution plots
showing these values as well as how they compared
to values generated by JPL Horizons, an ephemera-
generating database and interface created by the Jet
Propulsion Laboratory [4].

D. Computing the Orbital Elements

The orbital elements can all be easily determined
with ~r2, ~̇r2, and the angular momentum ~h, which is
equivalent to ~r2× ~̇r2. The equations are given below.
Some require a quadrant check, so two equations
(the sin and cos) for the element are presented.

a =
1

2
r
− v2

e =

√
1 − h2

a

i = tan−1

√
h2
x + h2

y

hz cos Ω = − hy

h sin i

sin Ω = hx

h sin i

The argument of perihelion ω is given by

ω = U − ν

where {
cosU = rx cos Ω+ry sin Ω

r

sinU = rz
r sin i

and  cos ν = 1
e
(a(1−e2)

r
− 1)

sin ν = a(1−e2)
eh

(~r·~̇r
r

).

E. Self Consistency Test

To test if our orbit determination process is self
consistent, we created an ephemeris using the or-
bital elements that we obtained from the Method
of Gauss and compared it to the JPL Horizons
ephemeris. All values and percent differences are
reported in Table VI.
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Element Mean JPL Mean Units Standard Deviation Percent Difference

a 1.80092 1.87613 au 0.02177 -4.00898
e 0.37258 0.39482 0.00667 -5.63387
i 1.54390 1.60843 deg 0.01970 -4.01235
Omega 122.032 121.804 deg 0.07415 0.18757
omega 163.422 163.439 deg 0.03744 -0.00981
M 357.804 356.87 deg 0.02642 0.26180

TABLE V
COMPARISON OF ORBITAL ELEMENTS AGAINST JPL HORIZONS.

F. Results
The Method of Gauss converged on the three

observations in Table V after 120 iterations. Monte
Carlo simulations were also ran 10,000 times. The
calculated orbital elements, Monte Carlo means and
standard deviations, JPL Horizons predicted values,
and percent differences are displayed in Table V.

Table VI compares the ephemeris generation re-
sults with the JPL Horizons predicted values at
the time of the last observation using the middle
observation as a reference.

Element Calculated JPL Percent Diff.

RA 16:27:55.753 16:27:10.73 0.076
DEC -18:45:44.27 -18:41:01.8 0.42

TABLE VI
COMPARISON OF CALCULATED EPHEMERIS VALUES AGAINST JPL

HORIZONS.

IV. DISCUSSION

A. Comparison against JPL Horizons
Our calculations of RA and DEC were quite

similar to the values reported on JPL Horizons. For
the July 3rd observation, JPL Horizons reported the
RA and Dec of 2003 HA22 as 16:27:10.73 and -
18:41:01.8, respectively, while we had calculated
16:27:55.753 and -18:45:44.27 respectively. Our
value for RA differed only by 45 seconds, while
our value for DEC differed by 4 arcseconds, a very
insignificant amount. In regards to both RA and
DEC, JPL Horizons produced slightly lower values
than our calculations. For our final observation on
July 15th, JPL Horizons reported 16:25:38.34 as
the asteroid’s RA and -18:40:50.0 as the asteroid’s

Dec. Our calculated value for RA differed by 0.13
seconds, while our value for Dec differed by 0.7
arcseconds. Again, JPL Horizons had slightly lower
values than ours. Overall, our values for RA and Dec
were rather consistent with the values computed on
JPL Horizons; the largest errors did not exceed a
few seconds or arcseconds. Thus, the information
on JPL Horizons reaffirms the relative accuracy of
our calculations.

B. Potential Sources of Error
Factors that affected the quality of our results may

include the visual quality of our images, however,
inconsistencies in our images have been minimized
through the image reduction and alignment process.
Additionally, the quality of our results is always
subject to human error, such as misreading a number
or performing an incorrect calculation. However,
we believe that this is not the case. Even so, there
are multiple things that could be done to improve
our results. One could be to use observations that
are further apart, allowing us to better measure the
asteroid’s trip across the sky. Another could be to
use more than three observations; this would allow
us to produce more accurate average calculations of
RA, Dec, and magnitude. Additionally, we could
implement a differential correction procedure to
each set of data, which would further refine our
results.

C. SWIFT Integration
In addition to our calculations, we also conducted

a simulation under the guidance of researchers from
the Southwest Research Institute (SwRI), in which
we attempted to determine the fate of our asteroid
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within the next 50 Myr. As we processed our data
with the Swift software, we found that in 70% of
test cases our asteroid had too small a perihelion,
indicating that it got too close to the Sun. Thus,
our SwRI simulations conclude that 2003 HA22 is
likely to perish due to too small a perihelion. Since
only 2 of our 48 test particles struck the Earth, there
is minimal danger posed by our asteroid to the Earth
within this timeframe.
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