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Abstract. Alzheimer’s disease is a progressive disease causing deteri-
oration of neurons in the brain, leading to dementia and eventually
death. Diagnosis of Alzheimer’s conventionally consists of a combi-
nation of neuropsychological tests and laboratory tests, and clinical
diagnosis accuracy lies at around 77%. As Alzheimer’s is associated
with loss in brain mass, which can be discerned from MRI scans, it
is a suitable task for deep learning and computer vision. An accurate
and efficient machine learning model could be of great assistance to
physicians as it could reinforce their diagnosis. However, deep learn-
ing typically requires large amounts of data, and medical data is often
scarce. A recent breakthrough in machine learning, the generative ad-
versarial network (GAN), allows for generation of realistic images, pro-
viding a potential solution to lack of data. In this study, we construct
ResNet50-based convolutional neural networks to perform Alzheimer’s
disease classification using MRI scans, achieving an F-1 score of 89%.
Furthermore, by generating samples using CycleGAN, we demonstrate
that GANs can significantly improve classification accuracy when used
for data augmentation, achieving an F-1 score of 95%.



1. Introduction

1.1. Background. Alzheimer’s disease (AD) is a progressive disease characterized
by the loss of cognitive ability and is the sixth leading cause of death in the United
States. The progression can be categorized by severity, consisting of mild, moderate,
and severe AD. These stages are typically classified and diagnosed based on a variety
of factors, including cognitive tests, interviews with family members, and laboratory
tests. Early diagnosis of AD is critical, as it can greatly improve patients’ quality
of life and in some cases slow or halt the rate of progression. According to a study
conducted by Beach et. al. in 2012, there was wide variation in AD diagnosis
accuracy, but the overall accuracy was 77% [1]. This is far from perfect, as many
AD cases are misdiagnosed, with a low true negative rate. This raises the demand
for a computer-assisted tool to reinforce physicians’ diagnosis.

As AD causes the breakdown and death of neurons, these changes in brain mass
can be observed through technology such as magnetic resonance imaging (MRI), com-
puterized tomography (CT), and positron emission tomography (PET). These scans
are suitable for computer vision and deep learning algorithms, particularly in image
classification. Recent advancements in machine learning, such as the convolutional
neural network (CNN), have achieved results in classification that even outperform
humans in some cases [2]. Diagnosis of AD using machine learning can serve as a
powerful tool for physicians, supplying an additional metric for diagnosis.

Convolutional neural networks typically require large datasets to perform effec-
tively. However, medical data is often scarce and limited in size. This is largely due
to the high standards of consistency and organization required for medical data, and
the cost and time required for data collection. For example, the ADNI dataset, one
of the largest datasets created for Alzheimer’s disease neuroimaging, only consisted
of 800 individuals. The lack of data in medical imaging is a prominent obstacle
preventing more widespread use of machine learning.
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This raises a demand for data augmentation techniques to improve medical ma-
chine learning models. One recently introduced technique is the generative adver-
sarial network (GAN) [3], one of the most influential milestones in machine learning.
By having two neural networks, a generator and a discriminator, compete against
each other, GANs achieve promising results in image generation, super resolution,
and data augmentation, among many other applications. The lack of large amounts
of medical data leads to significant potential for the use of GANs for data augmen-
tation. Using a relatively small dataset, GANs can generate similar but original
images, as opposed to image modifications used in classical data augmentation. In
this study, we investigate the potential for using deep learning in Alzheimer’s disease
classification by creating a convolutional neural network model. We also test the
feasibility of using GANs for data augmentation, specifically using the CycleGAN
architecture.

1.2. Literature Review.

1.2.1. Convolutional Neural Networks. A convolutional neural network is a type of
neural network that specializes in dealing with pattern recognition in images. Input
usually consists of a three-dimensional array containing width, height, and the pixel
values in the image. A diagram of the architecture of a convolutional neural network
is shown in Figure 1.

Figure 1. CNN Architecture. Adapted from [4].
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CNNs use layers of convolutions, allowing the network to sample context within
each frame as neighboring pixels are included. These feature maps allow the model to
detect low level features within regions. Pooling layers are also added, which create
subsamples of the previous layer. In classification tasks, a standard fully-connected
feedforward neural network is commonly applied to the flattened final feature map
output by the convolutional layers.

1.2.2. Transfer Learning. A common method of training image classification net-
works is through transfer learning, which is the process of using pretrained models
to operate on a different task, essentially transferring the knowledge stored in the
original network. Common pretrained models include VGG, Inception, or ResNet,
all of which have performed well on datasets such as ImageNet [5]. Transfer learning
can often allow for quicker training times along with high accuracy, and is also less
prone to overfitting.

1.2.3. Generative Adversarial Networks. Generative adversarial networks were first
proposed in 2014 by Ian Goodfellow [3]. The paper suggests the simultaneous training
of two adversarial networks in the style of a zero-sum minimax game. The goal of
the generator is to create images that the discriminator classifies as real, and does
so by taking in random noise and upsampling it through convolutional layers. In
contrast, the goal of the discriminator is to correctly classify what is fake data from
the generator and what is real data from the training set. This is also usually done
through a convolutional neural network, returning a probability that the image is
real.
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Figure 2. GAN Architecture. Adapted from [6].

The GAN uses the following loss function, where x represents real samples and z
represents generated samples.

Loss = Ex[log(D(x))] + Ez[log(1−D(G(z)))]

The discriminator attempts to maximize D(x), which is the likelihood of a correct
sample being classified correctly. The generator attempts to maximize D(G(z)), the
likelihood of the discriminator classifying its generated image as real, and thus wants
to minimize 1-D(G(z)). This means that the desired G will be minimized and the
desired D will be maximized. During each training iteration, the discriminator is
updated through gradient ascent in order to maximize the loss function, and the
generator is then updated through gradient descent.

1.2.4. CycleGAN. Zhu et al. [7] proposed a cycle consistent GAN network that
allows for unpaired image-to-image translation.
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Figure 3. CycleGAN architecture. Adapted from [8].

Consisting of two generators and two discriminators, CycleGAN allows for bidi-
rectional discriminatory verification. Standard GAN loss is used to determine the
authenticity of the generated images by comparing the generated image with a real
image in the other domain. To ensure that the transformations are cycle consistent,
cycle consistency loss is also introduced. When an image is passed through both
generators, the resulting image is compared with the original image, as shown in
Figure 4. Using the loss functions together essentially allows the generators to learn
a spatial transformation from one class to the other.

Figure 4. CycleGAN Loss. Adapted from [9].
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The generators G and F learn the spatial mappings from X to Y and vice versa,
and are verified by discriminators DY and DX . CycleGAN has been applied to topics
such as style transfer and object transfiguration and produces impressive realistic
results.

1.2.5. Data Augmentation. As stated before, GANs have significant potential in data
augmentation. Traditional data warping augmentation consists of techniques such as
geometric transformations, filters, and random erasing [10]. This can reduce overfit-
ting and improve accuracy. In contrast, GANs are a method of oversampling, as they
are able to extrapolate beyond the training set to generate synthetic data, rather than
solely modifying existing data within the training set. This is substantially useful in
fields lacking large amounts of data, such as in medicine. One instance of GANs be-
ing used in augmentation is a study conducted by Frid-Adar et al. proposing the use
of synthetic images in liver lesion classification [11]. GAN generated data was used
with a CNN for image classification on a dataset of size 182. Standard augmentation
techniques resulted in 78.6% sensitivity and 88.4% specificity, while the addition of
GAN synthesized data yielded 85.7% sensitivity and 92.4% specificity.

1.2.6. Alzheimer’s and Machine Learning. As MRI scans are an important aspect
of the diagnosis of Alzheimer’s, substantial research has been conducted regarding
machine learning methods. The most common model is a convolutional neural net-
work, as they are ideal for image processing. Farooq et al. [12] used a four way
CNN classifier between the following classes: normal cognition (NC), early mild cog-
nitive impairment (MCI), late mild cognitive impairment, and Alzheimer’s disease
(AD). The model was trained on the Alzheimer’s disease Neuroimaging Initiative
(ADNI) dataset. Data augmentation was performed through flipping images due to
the symmetrical nature of MRIs, and specific slices were selected to exclude those
without gray matter information. The proposed network based on GoogLeNet and
ResNet outperformed other studies done on the same dataset, with about 98% accu-
racy. Hosseini-Asl et al. [13] used a deeply adaptive 3D convolutional neural network
(DSA 3D-CNN) on the CADDementia dataset, which could then be generalized to
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the ADNI dataset, which they used for validation. The model achieved a 94.8%
accuracy in task specific classification. Glotzman et al. [14] proposed a network of
2D CNNs, applied to each of three images extracted from each sample in the ADNI
dataset. This allowed for the use of two dimensional CNNs on a three dimensional
dataset while preserving features. Both MRI scans and PET scans were used, and
both two way classification (NC vs AD) and three way classification (NC vs MCI vs
AD) were tested. Two way classification with PET-AV 45 scans performed the best,
with 83% accuracy.

There have been relatively few applications of generative adversarial networks in
classifying AD. A study by Bowles et al. [15] used GANs to model the progression of
the disease using MRI data. Using image arithmetic, the model could predict changes
in the brain over time and results were comparable to longitudinal examination data.
Another study conducted by Pan et al. [16] used GANs to synthesize PET scans
from MRI scans in order to fill in gaps in data as many AD patients do not have both
due to the high cost of PET scans. A cycle consistent generative adversarial network
was used in order to learn mappings between the two image domains. The features
are then fed into a landmark based multimodal multi-instance learning classifier for
diagnosis. Kim et al. [17] conducted a feasibility study on using GANs for slice
selective learning on PET scans. Using a GAN, they showed that double slices over
the posterior cingulate cortex achieves the best performance, and that two slices
performed significantly better than using one slice.

It is also important to consider the practical applications of machine learning in AD
diagnosis. A survey conducted by R. Bryan [18] on applying machine learning to AD
diagnosis notes that machine learning models are biased by the original population,
as it is limited to the dataset that it was trained upon. The overall conclusion reached
was that although it is unlikely that machine learning models can replace the skills
of radiologists, they can serve as useful tools to complement human skills.

The remainder of this paper is organized as follows. Section 2 describes the
methodology and pipeline for model construction. Section 3 presents and discusses
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the results obtained from using different model architectures and displays the signif-
icance of using GAN augmentation. Sections 4 and 5 report conclusions and future
work respectively.

2. Methodology

Figure 5 outlines the model pipeline, consisting of dataset acquisition, preprocess-
ing (including GAN augmentation), and classification using a CNN.

Figure 5. Overview of the model pipeline.

2.1. Data Acquisition. Data used in the preparation of this article was obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The pri-
mary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The specific
dataset used for training was the ADNI1 standardized MRI dataset, categorized by
severity: AD, MCI, and normal cognition (NC). For the purposes of this study, we
trained a network to classify between AD and NC. The dataset contained 705 samples
labeled as NC and 476 samples labeled as AD.

2.2. Data Preprocessing. The data was stored in NIFTI files, which were con-
verted into three dimensional numpy arrays using nibabel. A csv file containing
information about the scans, patients, and ground truth diagnosis labels was also
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downloaded from the ADNI database. As the NIFTI image data is three dimen-
sional, slicing was required to prepare samples for training. In order to capture as
much information as possible from the original image, we extracted three slices, one
each from the axial, coronal, and sagittal orientations. The slices were taken by
retrieving the midpoint of each axis length, and were resized to 224 x 224.

Two different methods of preprocessing were considered and tested:

(1) Skull stripping was applied, which is the process of removing the skull from
the MRI images. This isolates the brain tissue, allowing for more consis-
tency among samples. This was done using the Extractor function from the
deepbrain library.

(2) RAS + ISO transforms and histogram normalization were performed using
the TorchIO library [19]. These transforms change the orientation of the MRI
image to also improve consistency.

2.3. GAN based Data Augmentation. We constructed the CycleGAN models
using the implementation from [7]. The model architecture is shown in Figure 6.

Figure 6. CycleGAN Architecture.

The model consists of two generators, where one is trained to convert NC samples
to AD samples and the other is trained to convert AD samples to NC samples. During
training, a real NC image is passed through the first generator, and the resulting fake
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AD image is compared with an separate real AD image through the discriminator,
computing GAN loss. The loss equation, as displayed in equation (1), is the same
as the one proposed in the original GAN paper [3]. G represents the generator, DY

represents the discriminator for AD samples, x represents a real NC image, and y

represents a real AD image.

LGAN(G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (G(x)))](1)

This process is repeated, starting with a real AD image and resulting in another
GAN loss, as represented in equation (2). F represents the generator, DX represents
the discriminator for NC samples, x represents a real NC image, and y represents a
real AD image.

LGAN(F,DX , Y,X) = Ex∼pdata(x)[logDX(x)] + Ey∼pdata(y)[log(1−DX(F (y))](2)

The fake images are also passed through the second generator, returning a re-
constructed version of the original image. Cycle consistency loss is computed by
summing the losses from comparing the original NC image x with its reconstructed
image F (G(x)) and comparing the original AD image y its reconstructed image
G(F (y)). This is represented in equation (3), adapted from [7].

Lcyc(G,F ) = Ex∼pdata(x)[||F (G(x)− x||1] + Ey∼pdata(y)[||G(F (y)− y||1] (3)

Equation (4), the overall loss function, incorporates both GAN losses and the cycle
consistency loss. λ is a constant representing how much weight is placed on the cycle
consistency loss; λ = 10 is used in [7]. The objective of this loss function is to
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minimize G and F , which represent loss for the two generators, and maximize Dx

and Dy, which are the two discriminators.

L(G,F,DX , DY ) = LGAN(G,DY , X, Y ) + LGAN(F,DX , Y,X) + λLcyc(G,F )(4)

The generator is based on the ResNet architecture, and consists of downsampling,
9 residual blocks, and upsampling. Instance normalization and reflection padding is
used as described in [7]. The tanh activation function is used in its last layer to scale
the output image between -1 and 1. The generator architecture is shown in Figure
7.

Figure 7. CycleGAN Generator Architecture.

The discriminator is a CNN using PatchGANs, which classify whether an image is
real or fake based on patches. This decreases the amount of parameters needed and is
effective for images with high resolutions. The model also uses the activation function
LeakyReLU and utilizes instance normalization. The discriminator architecture is
shown in Figure 8.
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Figure 8. CycleGAN Discriminator Architecture.

The original dataset was split according to the label and randomly paired. Three
individual CycleGAN models were created, where each one was trained on data from
a different MRI slice. Each model used the Adam optimizer with a learning rate of
2e-4, and was trained for 100 epochs with a batch size of 1.

The trained model was used to generate sufficient samples to create a balanced
dataset. An AD version of each NC sample was generated and vice versa. A total of
705 AD samples and 476 NC samples of each orientation were generated, for a total
of 1181 images of each class, as shown in Table 1.

Normal Samples Alzheimer’s Samples Total

Dataset 705 476 1181

GAN generated 476 705 1181

Total 1181 1181 2362

Table 1. Dataset sizes after GAN augmentation.

2.4. Convolutional Neural Network Classifier. We used a transfer learning ap-
proach to create the model architecture as it would save training time and is generally
effective when datasets are small. Our pretrained model was the ResNet50 convolu-
tional neural network, displayed in Figure 9.
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Figure 9. ResNet50 Architecture. Adapted from [20].

The pretrained ResNet50 architecture takes in 3-channel RGB images while the
MRI scans are grayscale. To match the network, the one channel images were trans-
formed to three channels by stacking the tensor three times across dimension 0. The
last layer was also modified to become a binary classifier. We used a modified CNN
with multiple inputs in order to better encapsulate volumetric data. The model
architecture consists of three ResNet50 CNN models, where outputs from each in-
dividual CNN are concatenated and passed through fully connected layers, which
return the diagnosis group. The model architecture is shown in Figure 10.

Figure 10. Proposed Multiple CNN architecture.
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The neural network was fine-tuned using the Adam optimizer with a learning rate
of 1e-4 and trained for 50 epochs with a batch size of 32. A training, validation, and
testing split of 80%-10%-10% was used.

2.5. Model Implementation. All discussed networks were implemented using Python
3.7 with the PyTorch library. All training was done on a personal computer with an
AMD 3700X CPU and an NVIDIA RTX 2070 GPU.

2.6. Model Evaluation. CNN models were evaluated using accuracy, precision,
recall, and F1 score, with F1 score being the primary indicator for classification
performance. The metrics are detailed in equations (5) - (8), where TP denotes true
positives, TN denotes true negatives, FP denotes false positives, and FN denotes
false negatives.

ACC =
TP + TN

TP + TN + FP + FN
(5)

PRE =
TP

TP + FP
(6)

REC =
TP

TP + FN
(7)

F1 = 2× PRE ×REC

PRE +REC
(8)
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3. Results and Discussion

3.1. Comparison of Preprocessing Methods. Two methods of preprocessing
were tested, skull stripping and TorchIO transforms. Figure 11 displays the resulting
images after applying preprocessing.

Figure 11. Normal sample (left) and Alzheimer’s sample (right). The original
slices are displayed in the first column, the skull stripped samples are displayed in
the second, and the TorchIO transformed samples are displayed in the third.

Table 2 compares the results from applying different methods of preprocessing on
the three-input ResNet50 networks as shown in Figure 6. The different transforms
were not compatible with each other, so results were obtained separately.

Metric ResNet50 ResNet50 + Skull Stripping ResNet50 + TorchIO

Accuracy 0.891 0.908 0.907
Precision 0.932 0.882 0.897
Recall 0.804 0.900 0.854

F1 Score 0.863 0.891 0.875

Table 2. Comparison of ResNet50 networks with different prepro-
cessing.
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The model utilizing TorchIO transforms improved upon the unmodified model,
increasing the F1 score from 86.3% to 87.5%. However, the model utilizing skull
stripping outperformed both models. This is likely because it improves the consis-
tency among samples in the dataset, which makes it easier for the model to extract
important features. The model with skull stripping was used for the remainder of
the study.

3.2. CycleGAN Generation Results. Examples of CycleGAN generated images
are shown in Figure 12.

Figure 12. CycleGAN image synthesis.

By observation, the synthesized Alzheimer’s sample displays more dark space
throughout the brain when compared to the normal sample that it was transformed
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from, which is an indication of brain atrophy, a characteristic of Alzheimer’s dis-
ease. On the contrary, the synthesized normal sample on the bottom right has much
less dark space. While the quality of our synthetic images has not been verified by
experts, they exhibit many characteristics of real MRI images.

3.3. Comparison with GAN Augmentation. When using CycleGAN for aug-
mentation, an additional 705 AD samples and 476 NC samples of each orientation
were generated, for a total of 1181 images of each class. Table 3 shows that there was
a substantial increase in performance to the CNN model when GAN augmentation
was applied. The F1 score for the ResNet50 model increased from 0.863 to 0.946, an
9.6% increase. The F1 score for the ResNet50 using skull stripping increased from
0.891 to 0.951, a 6.7% increase.

Metric ResNet50 ResNet50 + GAN ResNet50 + SS ResNet50 + SS + GAN

Accuracy 0.891 0.954 0.908 0.949
Precision 0.932 0.951 0.882 0.944
Recall 0.804 0.942 0.900 0.959

F1 Score 0.863 0.946 0.891 0.951

Table 3. Comparison of CNN models with GAN augmentation.

These results indicate that the addition of CycleGAN improves CNN classification
performance. From this, it is reasonable to infer that the synthesized images had
meaningful features that benefited the model. The increased size and balance among
classes in the CycleGAN augmented dataset are also factors that are potentially
responsible for the increase in performance. Overall, these results demonstrate the
effectiveness of GANs in data augmentation.

4. Conclusions

In this study, we constructed convolutional neural network models utilizing the
ResNet50 architecture to diagnose Alzheimer’s disease using MRI scans. We also
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addressed the problem of size limitations in medical datasets with the use of genera-
tive adversarial networks (GANs). Using the ADNI1 dataset, we demonstrated that
the addition of GANs can greatly improve deep learning classification accuracy for
Alzheimer’s disease diagnosis. Specifically, we used CycleGAN to generate images
of one class using the other, balancing the dataset and increasing its overall size.
Our results show that classification accuracy improved substantially, with F1 scores
increasing from 0.863 to 0.946 for the standard model and 0.891 to 0.951 for the
model utilizing skull stripping. Due to the lack of large datasets in many medical
fields, the results obtained in this study can be generalized to many other fields as
well. Overall, with promising results in data augmentation, GANs have potential to
significantly improve upon classification tasks across a wide variety of applications.

5. Future Work

5.1. Preprocessing. Upon inspection, the current methods of preprocessing yield
some inconsistency between images, particularly in axial scans, due to subjects hav-
ing slight variation in brain shape. In the future, other methods of preprocessing
could be used to improve consistency across each slice taken. Software such as sta-
tistical parametric mapping could also be applied to perform preprocessing such as
gray matter segmentation and modulation to reduce variation between images.

5.2. Intermediate Stages. The current model serves to classify between NC and
AD samples. The intermediate stage, mild cognitive impairment (MCI), could also
be incorporated into the classifier. Augmented CycleGAN could be implemented to
generate images of all three classes.

5.3. MRI and PET Fusion. Diagnosis of Alzheimer’s Disease often uses both
MRI scans and PET scans. In contrast to MRIs, which provide identification of
abnormalities in the brain, PET scans can show areas of low metabolism, allowing
for differentiation between Alzheimer’s and other types of dementia. Using a fused
image with both scans in conjunction would contain more features and will likely
improve classification accuracy.
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5.4. External features. A full Alzheimer’s disease diagnosis requires many ele-
ments other than neuroimaging, such as mental status tests and physical exams.
Incorporating all of these elements would greatly improve the accuracy of a machine
learning system.
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